
ABSTRACT

TCL was designed as an interactive command

language, not a structured programming

environment. Small projects flourish in TCL,

thereby enticing programmers to build larger

systems. But large systems quickly become

unwieldy as the growing body of TCL

procedures becomes more and more difficult to

maintain or extend. What is needed is a way of

better organizing procedures and data into

packages with well-defined interfaces.

[incr tcl] is a set of TCL extensions

designed to provide such support. In this paper,

I describe these extensions and show how they

can be used to manage complexity.

INTRODUCTION

[incr tcl] provides object-oriented

extensions to TCL, much as C++ provides

object-oriented extensions to C. The emphasis

of this work, however, is not to create a whiz-

bang object-oriented programming environment.

Rather, it is to support more structured

programming practices in TCL without

changing the flavor of the language. More than

anything else, [incr tcl] provides a means

of encapsulating related procedures together

with their shared data in a local namespace that

is hidden from the outside world. It encourages

better programming by promoting the object-

oriented “library” mindset. It also allows for

code re-use through inheritance.

The fundamental construct in [incr tcl]

is the class definition. Each class acts as a

template for actual objects that can be created.

Each object contains a unique bundle of data and

provides a number of procedures or “methods”

that operate on the data.

Class definitions are expressed with the

following syntax:

class className {
 inherit superClass

 constructor args body

 destructor body

 method name args body

 public varname ?init? ?check?

 private varname ?init?

?TCL-commands?

}

The class command registers className as a

new command in the main interpreter. Objects

are then created using the className command

as follows:

className objName ?args . . . ?

This command creates a new object with the

name objName and registers objName as a new

command in the main interpreter. The object is

then manipulated by invoking methods with the

following syntax:

objName methodName ?args . . . ?

 As an example, suppose we create a class to

represent a toaster. Before we begin writing the

class definition, we must decide what features of

the toaster we will need to use in our

programming. Many toasters, for example, have

a heat setting that allows the user to adjust the

darkness of the toast. Toasters also have a tray

that catches crumbs from the toast. This tray

must be emptied from time to time, or it could

become so full that the crumbs would touch the

heating elements and catch fire. Notice that both

of these toaster features are related: If the heat

control is set toward the dark side, the toast will

tend to leave more crumbs in the tray, and the

tray will have to be emptied more often. Our

hypothetical toaster could be encapsulated in the

class definition shown in Figure 1.

The class definition can be thought of as a set

of “blueprints” for a toaster, while the object (or

[incr tcl] – Object-Oriented Programming in TCL

Michael J. McLennan

AT&T Bell Laboratories

1247 S. Cedar Crest Blvd.

Allentown, PA 18103

michael.mclennan@att.com

- 2 -

“instance”) itself is a particular toaster that has

been manufactured. Methods are common to all

objects in a particular class, but data is local to

the object instance. Thus, each toaster that is

created can have its own heat setting and its own

crumb count.

Note that all of the usual TCL commands are

recognized within the body of the class

definition. This makes it possible to define

procedures which are local to the scope of the

class definition. Procedures are nearly identical

to methods, except that they do not have access

to public and private data. In our example,

procedures are used to provide default behavior

that the user of a toaster could override by

simply by supplying his own TCL procedures.

We could create and destroy an instance of a

toaster with the following code:

toaster SerialNum00001 -heat 1
set c [SerialNum00001 info class]
puts stdout “class = $c”
SerialNum00001 destroy

The first line of this example creates a new

instance of a toaster with the name

“SerialNum00001” and passes the remaining

arguments (“-heat 1”) to the constructor. The

constructor is a special method which is

automatically executed whenever a new object is

created. Its purpose is to ensure that the object

data has been properly initialized. Likewise, the

special destructor method is invoked whenever

an object is destroyed, to clean up after it. In

FIGURE 1 – Definition for a class of “toaster” objects.

class toaster {
 constructor {config} { }
 destructor {
 if {$crumbs > 0} {
 eval $spillproc $crumbs
 }
 }
 method toast {nslices} {
 if {$nslices < 1 || $nslices > 2} {
 error “improper number of slices”
 }
 set crumbs [expr $crumbs+$heat*$nslices]
 if {$crumbs > 1273} {
 eval $fireproc
 }
 return $crumbs
 }
 method clean {} {
 set crumbs 0
 }

 public heat 3 {$heat >= 1 && $heat <= 5}
 public fireproc {defaultfire} {$fireproc != ““}
 public spillproc {defaultspill} {$spillproc != ““}

 private crumbs 0

 proc defaultfire {} {
 puts stdout “fire! fire!”
 }
 proc defaultspill {x} {
 puts stdout “$x crumbs ... what a mess!”
 }
}

- 3 -

addition to these special methods, each class also

has a number of built-in methods which provide

access to class information. These methods are

summarized in the Appendix to this paper.

In our example, the constructor does nothing

aside from allowing us to configure public

variables (more on this later). But if anyone is

foolish enough to destroy a toaster without

cleaning it, the destructor automatically invokes

a procedure to spill all crumbs in the crumb tray.

The public variable spillproc contains the

name of a procedure that is responsible for

actually spilling the crumbs, and the private

variable crumbs, containing the current crumb

count, is passed as an argument.

All class methods—constructor included—

follow the same conventions for matching actual

argument values to the names in the formal

argument list. These conventions are identical to

the ones used for ordinary proc’s, with one

addition: If the last formal argument is named

“config,” all remaining arguments are treated

as “-name value” assignments, where name

references any public variable. The value

actually assigned to the local variable config

within the method is the list of public variables

that were altered for a particular invocation. This

makes it easy to recognize changes to public

variables and act accordingly. Note that any

method can use config as a formal argument,

although the constructor is the most natural

place for it to appear.

Returning to our example, the arguments

“-heat 1” are passed to the constructor and

interpreted as an assignment to the public

variable heat. The validation statement for this

variable (“{$heat >= 1 && $heat <=

5}”) makes sure that improper assignments are

recognized as errors. As a rule, validation

statements for public variables are automatically

checked whenever the variable is altered by a

config assignment. If the statement evaluates

as false, an error is returned immediately—

without entering the body of the method.

The second line of our example uses an object

instance as a command. Specifically, the built-in

info command associated with the new toaster

object is invoked to query the class name. The

last line of this simple example invokes another

built-in method to destroy the toaster object.

This action automatically invokes the destructor,

which in our example spills the crumb tray.

Most of the useful work associated with a

toaster is accomplished by using its methods.

Methods provide a clean interface to an object

by providing ways to manipulate its data without

giving direct access to the data itself. We recall

that in our toaster class definition, we defined a

method toast that takes a number of slices as

its argument. This method performs the action

of toasting bread. In our view of toasters, the

only important consequence is that toasting adds

crumbs to the crumb tray; we use a simple

formula that multiples the heat setting by the

number of bread slices, and adds this many

crumbs to the tray. Whenever the user of a

toaster wants to clean it, he simple invokes the

clean method, and the number of crumbs is

reset to zero.

This example, foolish as it may seem,

illustrates a simple solution for many of the

problems facing TCL programmers. Many

programs have clumps of related procedures that

share the same data. Typically, this sharing is

accomplished through global variables, and

related procedures are kept together in source

files. The object-oriented paradigm helps to

organize this kind of programming better by

explicitly grouping procedures and associated

data into a class definition. It keeps private data

hidden from the global namespace, and provides

well-defined access mechanisms for public

variables.

Object-oriented programming also provides a

mechanism for code re-use through inheritance.

Suppose that we wanted to design a slightly

better toaster that rang an alarm whenever the

crumb tray was getting full. This new toaster

would be largely identical to the original model,

with the addition of a monitoring device. Using

inheritance, we might implement this new

toaster as shown in Figure 2.

The first statement (“inherit toaster”)

effectively copies the definition of class toaster,

causing class smartToaster to inherit all

public and private variables and all of the

- 4 -

methods except the constructor and destructor,

which are local to a class definition and cannot

be inherited. Any method or variable in an

inherited class can be referenced explicitly using

a “class::method” or “class::variable” syntax.

Similarly, global commands can be referenced

explicitly using the “::globalCommand”

syntax. Whenever the “::” or “class::”

qualifier is missing, the method is sought first in

the current class scope, then in its superclass,

and so on up the inheritance chain and out into

the global scope. Within the methods of class

toaster, therefore, the name “toast” refers to

“toaster::toast,” but within the methods

of class smartToaster, “toast” refers to

“smartToaster::toast.” Note that since

the command resolution includes the global

scope, widget commands can be invoked

transparently within a class, but have their

effects at the global scope.

Object-oriented programming buffs may

recognized that to have a command act as a

“virtual” method within some class scope, the

method name should be prefaced by the object

name: e.g., “$this toast.” This forces the

command to be executed in the external

interpreter, which always resets scope to the

most specific class and begins searching upward

in the inheritance hierarchy for the appropriate

method.

In this example, again, our constructor does

nothing aside from handling assignments to

public parameters. The destructor, however,

should still perform the spill function

implemented in class toaster. To account for this,

we must define a new destructor that executes

the old destructor method; the old method is

referenced explicitly using

toaster::destructor.

A new definition for the toast method is

provided to perform the usual toasting operation

via toaster::toast, then automatically

check the crumb level and signal when it is full.

Again, we use a public variable alarmproc to

represent the name of a callback procedure that

will actually ring the alarm.

If we were to instanciate a particular toaster

in this class, we might query it for hierarchy

information:

smartToaster SerialNum00002 -heat 5

SerialNum00002 info class
returns: “smartToaster”

FIGURE 2 – Definition for a class of “smartToaster” objects.

class smartToaster {
 inherit toaster

 constructor {config} { }
 destructor { toaster::destructor }

 method toast {nslices} {
 toaster::toast $nslices
 if {$crumbs > 1200} {
 eval $alarmproc $this
 }
 return $crumbs
 }

 public alarmproc {defaultalarm} {$alarmproc != ““}

 proc defaultalarm {name} {
 puts stdout “warning: clean toaster $name to avoid a fire”
 }
}

- 5 -

SerialNum00002 info lineage
returns: “smartToaster toaster”

SerialNum00002 isa toaster
returns: 1

SerialNum00002 isa blender
returns: 0

 Without inheritance, the much of the code

needed to implement the basic toaster would

have to be duplicated for each new toaster class.

This makes a program larger and more difficult

to maintain. If a bug were found in the original

code, the fix would have to be propagated to all

of the clones. Another alternative is to develop

one grand “supertoaster” that can account for all

possible toaster behaviors; but this leads to

complex code that is also difficult to maintain.

Inheritance provides a cleaner solution, allowing

for code to be shared among classes.

APPLICATIONS

One application area that this paradigm

addresses particularly well is the construction of

“mega-widgets.” It is often useful to package a

collection of primitive widgets together as a new

widget—using buttons and entries and a listbox

to create a file browser, for example. Until now,

it has been difficult to do this and make the result

look like a widget, and not a collection of

procedures. Using [incr tcl], however,

new widget classes can be defined entirely in

TCL code, and the resulting widget objects

behave like normal widgets.

I have created a class attColorEditor,

for example, that packages a canvas, a scale and

an entry widget together to form a color editor,

shown in Figure 3, with a Hue-Saturation-Value

(HSV) color model. Any color name typed into

the entry widget is automatically displayed in

terms of its hue, saturation and value

components. Hue and saturation are represented

by a position within the circle drawn on the

canvas; value is shown directly by the scale

widget. As the user adjusts these components by

clicking on the canvas or adjusting the scale, the

entry is updated to display the current color

value in “#rrggbb” format. The entry widget

is also configured to support drag&drop[1], so

the user can transport a color value to other parts

of his application.

A new attColorEditor widget is created

like any other Tk widget:

attColorEditor .editor -size 2i \
 -borderwidth 3

FIGURE 3 – attColorEditor mega-widget implemented using [incr tcl].

- 6 -

The args “-size 2i -borderwidth 3”

are passed to the constructor and treated as

assignments to the public variables size and

borderwidth. The class also includes a

config method which can be used to change

widget attributes (i.e., public variables), an

install method which loads a color value,

and a get method which returns the current

color value. Note that although any number of

attColorEditor objects can be created,

each will have its own private variables

containing the H, S and V color components.

Inheritance is an added advantage, allowing

mega-widgets to be specialized with new

features. I have created a class attListBox,

for example, that displays a list of items in a text

widget, and automatically manages its own

scrollbar. When the list is longer than the display

area, the scrollbar is packed into the widget

frame; when the list is shorter, it is removed. I

then derived the class attSelectBox, which

inherits the display capability from

attListBox, and adds facilities for selecting

items in the list. I then derived the class

attFilteredSelectBox, which inherits

the selection capability from attSelectBox,

and adds a filter entry that restricts the display to

items matching a string pattern. A simple

application illustrating this family of widgets is

shown in Figure 4.

With no C code and very little TCL code, I

have created an array of useful widgets.

[incr tcl] supports a clean separation

between the main application and the special-

purpose code that drives these widgets. I believe

that these same principles can be applied in a

variety of different contexts, allowing

programmers to encapsulate many pieces that

join together in their application.

CONCLUSIONS

The object-oriented paradigm has become

popular because it supports the construction of

complex applications. [incr tcl] represents

a simple set of object-oriented extensions

designed to help programmers write applications

that are easier to maintain. Instead of relying on

a single global namespace, programmers can

package related procedures together with their

shared data into a class definition. These

procedures provide a well-defined interface for

manipulating the data that is otherwise hidden

from the outside world. Classes can inherit

characteristics from one another, allowing for

code reuse through specialization. Each class has

transparent access to its own local namespace,

but can also access the namespace of inherited

classes and the global namespace, when needed.

As it stands, [incr tcl] supports only

single inheritance. That is, a class can inherit

characteristics from a single class and its

ancestors. With just a little more effort, it could

be modified to support multiple inheritance. The

current work, however, is simply the first step in

exploring a paradigm which programmers could

use to write better applications with TCL.

FIGURE 4 – Inheritance is used to build a family of listbox mega-widgets.

- 7 -

REFERENCES

[1] The drag&drop command supports drag-

and-drop operations for Tk widgets. It is

available for anonymous ftp from the archive

site on harbor.ecn.purdue.edu,

among the contributed extensions in

/pub/tcl/extensions.

APPENDIX

Following is a summary of the commands

used in [incr tcl].

class className definition

Provides the definition for a class named

className. If className is already defined,

then the class definition is ignored; this

allows for “multiple includes.” className

becomes a command in the interpreter,

handling the creation of new object instances.

The class definition is evaluated as a series of

TCL statements that configure the interpreter

managing a particular class scope. In

addition to the usual commands, the

following class definition commands are

recognized:

inherit className

Declares className as a superclass, causing

the current class to inherit its characteristics.

constructor args body

Declares the argument list and body used for

the constructor. If defined, the constructor is

automatically invoked whenever a new object

instance is created. A constructor definition

cannot be inherited.

destructor body

Declares the body used for the destructor. If

defined, the destructor is automatically

invoked whenever an object is destroyed. A

destructor definition cannot be inherited.

method name args body

Declares a method called name with an

argument list args and a body of TCL

statements. A method is similar to the more

familiar proc, except that it has access to

public/private variables. Within the class

scope, a method can be invoked just as a

proc would be invoked—simply by using its

name. A method name can also be explicitly

scoped using the syntax “class::method.”

Commands in the external interpreter can be

explicitly scoped using the syntax

“::globalCommand.” In the external

interpreter, the method name must be

prefaced by an object name.

public varName ?init? ?check?

Declares a public variable named varName.

If the optional init is specified, it is used as

the initial value for the public variable when a

new object is created. If the optional check is

specified, it is tested whenever a public

variable is accessed via the config

argument. If the check expression evaluates

to zero, the assignment is treated as an error.

private varName ?init?

Declares a private variable named varName.

If the optional init is specified, it is used as

the initial value for the private variable when

a new object is created. All objects have a

built-in private variable named “this”

which is initialized to the instance name for

the object.

className objName ?args. . . ?

Creates a new object in class className with

name objName. Remaining arguments are

passed to the constructor. The object is

manipulated using its objName as a

command, as shown below:

objName method ?args. . . ?

Invokes a method named method to operate

on the specified object. Remaining arguments

are passed to the method. The method name

can be “constructor,” “destructor,”

any method name appearing in the class

definition, or any of the following built-in

methods:

objName info ?option? ?args. . . ?

Returns information related to the class

definition, or information concerning the

interpreter that implements the class scope.

The option parameter includes the options

recognized by the usual TCL info

command, as well as the following things:

- 8 -

objName info class

Returns the most-specific class name for a

particular object instance.

objName info lineage

Returns a list of class names in order from

most to least specific. This list represents the

derivation history for a particular object, and

is formed starting with the most specific class

and following the chain of inherit

statements upward through the hierarchy of

class definitions.

objName info methods ?methodName?

Returns a list containing the definitions of all

methods definined in a class. Each list

contains three elements: the method name,

the argument list, and the body. If the

optional methodName is specified and that

method name is recognized, then a list is

returned containing two elements: the

argument list and the body. If the

methodName is not recognized, an empty

string is returned.

objName info publics ?varName?

Returns a list containing the definitions of all

public variables definined in a class. Each list

contains four elements: the variable name, its

inital value, its validation statement, and its

current value. If the optional varName is

specified and that variable name is

recognized, then a list is returned containing

three elements: the initial value, the

validation statement, and the current value. If

the varName is not recognized, an empty

string is returned.

objName info privates ?varName?

Returns a list containing the definitions of all

private variables definined in a class. Each

list contains three elements: the variable

name, its inital value, and its current value. If

the optional varName is specified and that

variable name is recognized, then a list is

returned containing two elements: the initial

value and the current value. If the varName is

not recognized, an empty string is returned.

objName isa className

Returns non-zero if the given className can

be found in an object’s lineage, and zero

otherwise.

objName destroy

Invokes the destructor associated with an

object and frees the object data. After this

command, objName is no longer recognized

as a command in the main interpreter.

